problem in regression parameter estimation by using cumulative-sum method 累積法進(jìn)行回歸參數(shù)估計(jì)時(shí)正規(guī)方程的病態(tài)問題研究
ridge and principal correlation estimation of the regression parameters and its optimality 回歸系數(shù)的嶺型主相關(guān)估計(jì)及其優(yōu)良性
the superiority of generalized ridge estimation of regression parameter in growth curve model under pitman closeness criterion 準(zhǔn)則下生長曲線模型回歸參數(shù)陣廣義嶺估計(jì)的優(yōu)良性
in chapter 2, first the author adopt pure sequential approach to gain cofidence bounds for linear regression parameters, which could be regarded as the continuations of the work of gle . ser ( 1965 ) 在第2章里,作者首先采用純序貫抽樣,獲得線性回歸系數(shù)的置信域,這可視為gleser(1965)工作的繼續(xù)。
the purpose of this paper is to compare the relative efficiency of complete case analysis and the regression calibration method in estimating linear regression parameters when covariates are missing 摘要本文主要探討在一部份的伴隨變量有缺失下,使用完整資料分析法與回歸校正法估計(jì)直線回歸斜率參數(shù)時(shí),有效性的比較,并提供回歸校正法比完整資料分析法有效時(shí),斜率參數(shù)應(yīng)滿足的條件。